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Chapter 1 

Overview 

The Problem 

In certain circumstances, such as a crisis, a system may need to change its 
security policy dynamically. This includes two different aspects of a security 
policy: access control, and what mechanisms enforce security constraints. 

There are problems associated with each aspect. For the first, suppose (in 
a crisis, say) we suddenly need to let a person see more than they are cleared 
to see. With respect to the usual static sort of policy, allowing the person 
access is a violation. We want to be able to allow this sort of change, however, 
so we need a wider framework in which to place such scenarios. Moreover, 
when we do change the policy in such a way, we are very concerned with how 
we do it — we want to do it so as to minimize the undesirable consequences. 
In Task 1, we address these two concerns. 

The second adaptive security aspect deals with the enforcement of se- 
curity. Suppose a system switches to "crisis" mode of operation in which 
weaker or different security enforcement is used. It now becomes a problem 
to ensure that all needed mechanisms are in place. The problem here is to 
analyze and control the system despite its complexity. Task 2 addresses this 
problem. 

Fundamental to any secure system is risk analysis. In Task 3 we address 
the problem of risk analysis for adaptive systems as studied in Task 2. 



Achievements 

The subject of this project is a new area, at least to the literature. The aims 
of the project were to take a broad view of the area, survey the basic issues, 
and outline practical solutions to the various problems. We met these aims, 
and furthermore made some foundational advances in a new area (need-to- 
know). 

On Task 1, we discuss the fundamental security vs. functionality trade- 
offs that must be made in changing conditions. We suggest mechanisms for 
implementing dynamic security policies. We suggest methods for analyzing 
the consequences of such policies (dynamic lattices). We identify other key 
areas (recovery, auditing). Also on Task 1, we determined that the basic 
motivation behind the accesses granted in an adaptive security policy is the 
tasks that need to be performed. Accordingly, we introduce task-based secu- 
rity policies (related to, but different from, role-based access control). This 
sort of policy provides an organized presentation of what needs to be be done, 
taking into account the security requirements of a system. 

In addition, we produced new foundational work on Task 1. Much theo- 
retical (and practical) work has been done in the past on how to define and 
implement security policies, and especially on how to analyze the behavior 
of systems with respect to their policies. This work takes the policy as a 
given. The other side of the coin — how to choose a policy, and what a 
policy means in relation to all other possible policies — has not been ad- 
dressed from a modelling and analysis perspective. We take the first step 
in this direction by presenting a model and theory of need-to-know. This 
addresses the fundamental problem that arises when determining the "who 
can see what" part of a security policy: how to make the trade-off between 
functionality and secrecy. 

On Task 2, we identified a way of decomposing an adaptive system that 
enables a systematic way of analyzing its security and ensuring that security 
is maintained in the presence of adaptations. 

On Task 3, we developed a method for performing risk analysis of an 
adpative system. This method is an extension of the methods used for system 
profiling by the NSA System Profiling Group. We sketch a way of providing 
tool support for this risk analysis using RDD-100 as an exemplar. 



Chapter 2 

Task 1: Changing Access 
Authorizations 

2.1 Introduction 

In this chapter we discuss the access control aspect of adaptive security poli- 
cies. We survey the fundamental issues and present concrete methods for 
resolving the conflict between security and functionality, and we present 
methods for establishing suitable security policies in an adaptive environ- 
ment. 

Section 2.2 is an introduction to the basic problems for adaptive security 
policies, and to mechanisms that address these. Section 2.3 presents a task- 
based security policy that is well suited to capture the security requirements 
of adaptive systems. In section 2.4 we present a model and theory of need-to- 
know that forms the theoretical foundation for the formulation of adaptive 
security policies. 

2.2 Adaptive Security:   Resolving Security 
vs. Functionality Conflicts 

To formulate a good security policy requires balancing several competing 
goals. On the one hand, workers must be provided with enough information 
to do their jobs, but on the other hand, providing too much information 



increases the chance that the information will be misused by malicious or 
untrustworthy individuals. Tools must provide workers with the functionality 
they need, yet there must be sufficient barriers to prevent misuse. 

We make a note here on terminology. In this document, the word "disclo- 
sure" is used to refer to the result of any act or situation whereby information 
becomes available to a user or process (this includes deliberate release to an 
authorized person and undesired exposure to an unauthorized person). 

There are two broad reasons that sensitive information may be disclosed: 

1. Disclosure of sensitive information may be intentional. 

2. Disclosure of sensitive information may be a side effect. 

Disclosure is intentional when an activity requires that sensitive informa- 
tion be given to users. In the best of circumstances, such disclosure is not a 
security compromise because of the mandatory access control rules that re- 
quire that information be disclosed only to a person who has the proper clear- 
ance, which indicates that he can be trusted with the information. However, 
in an emergency, there may be a sudden need to supply critical information 
to users that goes beyond their normal clearances. 

Disclosure is a side effect when an activity is partially visible to people 
who are not directly involved in the activity. This kind of disclosure is often 
called a covert channel, although in some cases there is nothing "covert" 
about it. For example, there is no way to build a skyscraper or launch a 
rocket in complete secrecy, since these activities are visible to anyone. For 
an example closer to the computer world, it is impossible to commandeer the 
full resources of a computer system in times of emergency without revealing 
this fact to all users. 

The dividing line between these two kinds of security/functionality con- 
flicts is not always hard and fast. It often depends on a number of factors: 
whether disclosure can be prevented, the reasons for granting clearances, 
how fine-grained is the classification of data one uses, and others. For exam- 
ple, consider a computer system that contains both secret and unclassified 
data. If the system has "leaks" that cannot be plugged without impeding 
functionality, then there are two options: 

1. If the system is considered to be a multilevel secret/unclassified, then 
unclassified users could obtain secret information as a side-effect. 
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2. One can consider all the information on the system to be secret. In this 
case, it will be necessary to give every user who needs to use the system 
a secret clearance, even those who would not normally be cleared to that 
level. This case would be an example of intentional disclosure. 

Task 1 addresses the access control aspect of adaptive security policies, 
and so in the remainder of this chapter, we consider the issue of intentional 
disclosure of sensitive information. Side effects (covert channels) are included 

in the analysis of Task 3 (chapter 4). 

2.2.1    Intentional Disclosure 

Before discussing possible policies for dealing with intentional disclosure of 
sensitive information, we need to look more closely at the criteria that must 
be used for judging whether releasing information is justified. To start off, we 
need to ask why one would ever intentionally release information to someone 
who is not cleared for it. The answer, "Because exceptional circumstances 
require it", while correct, is not the complete story. If there is a possible 
circumstance under which a user is to be given top secret information, why 
not simply give the user top secret clearance to begin with? The biggest 
argument against this solution comes from the principle of least privilege. 
The trust that is placed in a person by granting them a clearance is only 
relative, not absolute. There have been a number of incidents in recent years 
in which people trusted with top secret information have betrayed that trust. 
To be on the safe side, standard military practice is to allow a user to have 
a clearance only if there is an imminent need for it. Allowing situation- 
dependent disclosure of information is a more fine-grained application of the 

principle of least privilege. 
There are two possible approaches to granting a user temporary, situation- 

dependent access to sensitive information within the context of traditional 
multilevel security. For simplicity, we will assume that the information is 

contained in a file. 

1. The security clearance of the user can be temporarily raised. 

2. The security classification of the file can be temporarily lowered. 

Both of these solutions run into problems. If the levd of the user is 
raised so that he can legally see the file, then he will also be able to see other 



information that he has no business seeing. On the other hand, if the level 
of the file is lowered, then it will also become visible to other users who have 
no business seeing it. Both situations violate the principle of least privilege. 

Adding New Levels 

A third alternative, which goes beyond traditional multilevel security, and is 
in keeping with the principle of least privilege, is to change the levels of both 
the user and the file. Let the original level of the user and the file be /„ and 
lf, respectively, and let the new levels be l'u and l'f, so that l'u > l'f. These 
new levels will have to be added to the security lattice in such a way that 
the user is not given access to any unnecessary information, and so that the 
file is not given to any unnecessary users. This means that for every level / 
in the original lattice, it must be that / < Vu only if / < /„ and / > l'f only if 

l>lf. 
One simple choice is to use a new category, crisis. (More generally, 

one might introduce a collection of new categories for different sets of users 
and files.) The level of the user could be raised by giving him this new 
category (without changing his hierarchical security level). The level of the 
information could be changed to unclassified with a single category crisis. 
This choice would make it impossible for anyone other than that user to see 
the file. If it is important that every user who was formerly able to see the 
file is still able to see it, this can be accomplished in one of two ways: 

1. The category crisis could be added to every level in the lattice that 
was originally greater than or equal to //. 

2. A copy of the file could be made, so that one copy is kept at the original 
level //, and the second is placed at the newly created level l'f. 

The first solution is equivalent to creating a new kind of level, a disjunc- 
tion level. For example, instead of making the level of the file be unclassified 
with category crisis, one could instead make the new level be // U crisis, 
meaning that it could be read by anyone who had level greater than or equal 
to //, or who had category crisis. (An object with such a disjunction level 
can be written only by someone who is able to write both objects of level // 
and objects with category crisis.) Such disjunction levels have been used 
in the past with ORGCON (ORGanization CONtrol) policies. 



Problems with New Levels 

Adding new levels to the security lattice on the fly as described above is a 
workable solution if the file can be made read-only. However, if the file needs 
to be constantly updated, then there is a real problem. By lowering the level 
of the file so that it can be read by additional users, one also restricts who 
can write the file, according to mandatory access control rules. If the file is 
made unclassified with category crisis, then it can be written to only by 
processes with a level less than or equal to this. In general, this restriction 
would prevent the file from being updated. (Since the original level of the 
file was If, it is likely that it is updated by processes of level //.) 

The only obvious solutions to this problem are: 

1. Continue to allow the original processes to update the file, with no 
changes to their security levels. This means allowing write-downs. 

2. Reclassifying all the processes that write to the file so that their new 
levels are less than or equal to the new level of the file. 

The first approach is equivalent to raising the level of the user to //, 
and then using discretionary access control to prevent him from reading any 
other files. The second approach is perhaps safer, but is significantly more 
complicated, since it involves changing the level not only of a single file, but 
an entire interrelated collection of files and processes. 

Dynamic Lattice Approach 

In adaptive security, circumstances may force disclosure of information in a 
way that violates static mandatory access control. In a sense, these violations 
collapse many of the distinctions between levels. This situation can lead to 
an effective lattice of security levels that is coarser than the original lattice. 
For example, consider a multilevel system with three security levels, unclas- 
sified, confidential, and secret. If it becomes necessary to make a nonstatic 
secret file readable to confidential users, then it will, in general, be impossible 
to maintain the distinction between secret information and confidential infor- 
mation. However, as long as both secret and confidential information are kept 
away from unclassified users and files, it may still be possible to maintain 
multilevel security with a reduced security lattice consisting of two levels, 



unclassified, and secret/confidential After the crisis is over, it may be pos- 
sible to manually separate secret and confidential information to reestablish 

the original security lattice. 
Recovery from information flow leaks is more complicated when it comes 

to users, since there is no way to "erase" information that a user has learned 
during a crisis. Security for users must involve procedural enforcement; for 
example, debriefing interviews, and auditing. 

The dynamic security lattice approach is developed in section 2.2.5. 

A Non-MLS Approach 

Another approach is to abandon using MLS security for enforcing the princi- 
ple of least privilege, and instead use role-based access control with situation- 
dependent access. According to this strategy, users of a system must be 
cleared by mandatory security to the highest level on the system. The prin- 
ciple of least privilege is enforced by making each user's access to files de- 
pendent on both (1) the role the user is playing and (2) the current situation 
(whether or not there is some kind of crisis brewing). This kind of non-MLS 
security policy was advocated by Boebert[BK85] and Clark-Wilson[CW87]. 
The benefit of such an approach is that access restrictions are designed from 
the start to be in accordance with the information needs of the user. However, 
non-mandatory security policies suffer from the fact that there is no good 
way to check for covert channels. (It is not even clear what the definition of 
a covert channel would be for such policies.) 

An non-MLS approach is developed in section 2.3, where we describe a 
type of policy, called "task-based", that meets the needs of adaptive security. 
We also discuss how to handle associated problems. 

2.2.2    Intentional Interference 

Another issue that is related to intentional disclosure is intentional interfer- 
ence. According to the usual mandatory access control rules, a high-level 
process is not allowed to interfere with low-level files or processes. (For ex- 
ample, by writing to low-level files or setting low-level variables.) However, 
there may be some cases where it becomes necessary to allow high-level pro- 
cesses to influence low-level behavior. For example, top secret information 
may reveal that a bomb has been planted in a building.  If the building is 
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then evacuated (by a top secret process setting off an alarm), the result will, 
strictly speaking, be a security violation. Intentional interference is (from the 
point of view of information flow) equivalent to downgrading, but it differs 
with respect to who is responsible for actions. In the case of downgrading, 
information is made available to low-level processes, which then make de- 
cisions based on it. In the case of intentional interference, the actions are 
directly taken by high-level processes. 

2.2.3    Mechanisms for Situation-Dependent Disclosure 

There are several possible triggering mechanisms that can be used to invoke 
situation-dependent disclosure: 

1. The trigger may be an external signal. 

2. The trigger may be the system entering a particular state. 

3. Individual users may be authorized to judge whether the situation calls 
for disclosure. 

The last case is the most flexible and also the simplest to implement. 
However, since the decision to enter the crisis mode is made "off-line", there 
are no automated checks that the decision was made appropriately. For each 
of these mechanisms, there is a possible opportunity for manipulation of the 
system by a malicious user. This threat is alleviated somewhat by careful 
auditing of all security-relevant events (see section 2.2.4). Preventing the 
manipulation of the system is usually considered not a security concern but 
an integrity concern. However, as can be seen in this case, integrity violations 
can lead to security violations. (Strictly speaking, in such a case, there would 
be no violation of the automated security policy — the ASP, as discussed 
by Sterne in [Ste91]). This policy would say that information disclosure 
can occur in particular circumstances, and those circumstances will actually 
occur. However, manipulation of the system would be considered a violation 
of the security policy objective (the SPO of Sterne). It should also be a 
violation of the operational security policy (the OSP of Sterne), since this 
policy includes informal rules about how users are supposed to come to their 
decisions about security-relevant actions.) 

11 



Formalizing integrity constraints is notoriously more difficult than formal- 

izing security constraints. This is because the definition of integrity depends 

on the intended functionality of the system, while security can be formulated 
in terms of information flow without reference to functionality. (Function- 
ality considerations may go into the choices of level assignments to users, 
processes, and information, but these choices are all simply parameters to 
the security theory.) A common way to specify integrity is in terms of "nor- 
mal forms" for data, which is really not sufficient to capture the distinction 
between valid and malicious manipulation of the data. 

2.2.4    Other Issues for Adaptive Security 

Recovery 

When information leaks during a crisis, steps must be taken afterwards to 
recover as well as possible. There are several issues involved in such recovery: 

1. Determining what information leaked. 

2. Determining the reasons the information leaked. 

(a) Who is responsible. 

(b) What was the situation. 

3. Determining how far the information has leaked. 

(a) To which users. 

(b) Into which data containers. 

(c) Out of which output channels. 

4. Sanitization/recovery after crisis. 

(a) What to do about people? 

5. Containing the leaks. 

12 



Auditing 

There are two different ways to enforce information flow policies. The first 
way is to use access control, which prevents a user from performing actions 
that violate the policy. A second method is to allow the user to perform such 
actions, but make sure that such actions are audited. The approach using 
auditing is slightly less secure, since there is no immediate enforcement, but 
it is more flexible, since it allows the user to use his judgement as to when 
functionality overrides security concerns. Auditing is thus vital for adaptive 
security when a user is allowed to trigger disclosure — the third possibility 
listed in section 2.2.3. To the extent possible, enough auditing information 
must be collected to ensure that if the user makes irresponsible judgements, 

he must answer for his actions. 
In a general system, there may be information flow polices that are en- 

forced using both of these methods. There must then be an overall policy 
determining when it is acceptable to use auditing for enforcement. 

2.2.5    Dynamic Security Lattices 

One way to model the conflicts between security and functionality is using a 
dynamic security lattice. This approach defines, at any given time, an effec- 
tive security lattice where the partial ordering is determined by the transitive 
closure of the information flows that are currently enabled. In other words, 
if it is possible to modify object B based on information in object A, then 
in the dynamic security lattice, the level of B is greater than or equal to the 
level of A. The method used here is a simplification of the approach taken 

by Lee Badger in [Bad90]. 
The primary advantage of using a dynamic security lattice is that it pro- 

vides a rough estimate of where sensitive information may have leaked fol- 
lowing a change in security constraints. In order that dynamic lattices not 
violate the constraints of mandatory security, it is imperative that the cur- 
rent security lattice is always compatible with the official mandatory security 

lattice in the following ways: 

1. If a user is forbidden under any circumstances to learn information, 
then the user's level can never become greater than or equal to the 

level of the information. 
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2. When information is exported from the system, it is important to label 
the information with a level that is greater than or equal to the level of 
the sources of the information (unless there is an official downgrading 

policy). 

Typically, these constraints imply that all users must be cleared for all 
information that they could ever, in any circumstance, receive. The dynamic 
security lattices in this case are a way of enforcing a need-to-know policy. 

A Model of Dynamic Lattices 

To understand the impact of dynamic lattices, it is helpful to try to formalize 
the issues. We assume a computer system (operating system plus applications 
software) can be described by the following parameters: 

• A set E of possible information-containing entities. This set will include 
system variables, and files, as well as users. 

• A set A of possible actions. 

• For each action, there is a set R(a) of entities that are read by the 
action, and a set W(a) of entities that are written by the action. 

• At any time, there is a set P of permitted actions. 

• The effective level lattice is defined by the requirement that for any 
two entities u and v: l(u) < l(v) holds if for some sequence of entities 

ej and actions a,j in P: 

- e0 = u 

- ej is in R(a,j) 

- ej+i is in W(dj) 

- eN = v 

To create a policy for a system, it is necessary to specify the circum- 
stances under which an action will be enabled, and a set of constraints (pol- 
icy situation-dependent) on the flow relations. In some circumstances, it 
may be necessary to accompany the granting of new information flow rights 
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(enabling new actions) with the rescinding of other information flow rights 
in order to prevent the transitive closure of the flow rights from connecting 
two entities that should never be connected. For example, it may be that 
the security policy prevents information from ever flowing from A to C, al- 
though in certain circumstances, information can flow from B to C, and in 
other circumstances, information can flow from A to B. To enforce such a 
policy, it must be that information flow from B to C is severed whenever 
information flow from A to B is enabled. 

While the analysis described above can be done off-line to determine 
where information will flow in what circumstances, there is a method de- 
veloped by Sutherland, Perlo, and Varadarajan in [SPV89] that allows for 
"run-time" enforcement of changes to data sensitivity. Their approach is to 
label each data object and message with a specification, not only of its current 
sensitivity, but also of the circumstances under which that sensitivity may 
change. As long as the labels are preserved, this approach permits run-time 
determination of where information of various sensitivity has flowed, and au- 
tomates the time-dependence of enforcement. However, the implementation 
requires additional machinery above and beyond what is normally available 

on secure systems. 

2.3    A Task-Based Access Control Policy 

One approach to the management of security in adaptive systems is to use 
a task-based access control policy, which makes explicit the relationship be- 
tween an agent's privileges and the tasks he must perform. The usual term 
for this kind of policy is "role-based access control", but for adaptive systems 
the term "task" is more appropriate because it emphasizes what needs to be 
done rather than what we call the people who will do it. 

In role-based systems, a system administrator usually groups related re- 
sponsibilities together and calls that a role. However, in creating roles in such 
a way, one is constrained by the implicit assumption that related responsi- 
bilities should be concentrated in one individual. This assumption might be 
wrong or inconvenient for several reasons: 

1. As was discussed by Clark and Wilson [CW87], it may be dangerous to 
give one individual unconstrained privilege in one area. K several people 
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must work together to play what might be conceptually considered a 

single role, then they can keep each other honest. 

2. In a crisis, it may be important to distribute privileges so that no person 

becomes a "single point of failure". 

3. Because a task is typically more constrained in time and scope than a 
role is, it may be easier to determine the access rights that are needed 
to perform a particular task than it would be to determine the access 

rights to fulfill a particular role. 

4. Task-based access control provides more flexibility than role-based ac- 
cess control. One can in principle give an agent the authority to do 
a task only once, in a particular situation. In contrast, a role implies 

ongoing privileges. 

In creating a task-based access control policy for an adaptive system, one 

needs to determine the following parameters: 

1. A collection of scenarios in which the system will have to operate. 
Each scenario would be a class of situations (we describe such classes 

in section 2.4). 

2. The collection of tasks that may need to be performed for each scenario. 

3. The collection of actions that may need to be taken to accomplish each 

task. 

4. The collection of objects that are involved in each action, together with 
the type of access involved. (Does the action require reading the object 

or writing it, or both?) 

2.3.1     Completeness of the Parameters 

These parameters describing the system need to be checked for completeness. 
In the case of the set of scenarios, completeness involves either showing that 
the collection of scenarios covers all possible, situations in which the system 
can be used, or else making explicit the circumstances that are covered by 
the analysis. It is also necessary to show that the set of tasks are complete 
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for each scenario, the set of actions are complete for each task, and the set 
of objects are complete for each action. 

Of course, it may not be possible to make a formal and rigorous demon- 
stration of completeness because of the inherent complexity and fuzziness of 
real-world objectives. However, it is possible to improve the chances that 
nothing was overlooked by using a fault-tree analysis. A fault-tree analysis 
organizes the set of situations into a tree of possibilities. At each node of the 
tree is attached a question about the situation, which has a finite number of 
possible answers. For example: "Is the system in war mode?" has two pos- 
sible answers, "yes" and "no". Underneath a node is a number of branches 
corresponding to each possible answer to the question. Each inherits all the 
answers from higher nodes of the tree. If the questions asked at each node 
are not formal, then there is no way to prove rigorously that the tree is com- 
plete, but it can be tested for completeness by a "devil's advocate". The 
advocate should be someone other than the people who constructed the tree. 
The advocate tests the completeness of the tree by constructing a number of 
hypothetical situations, and then for each situation, answering the questions 
appropriately until he or she finds a leaf node that corresponds to the situa- 
tion. The system designers must then give an argument that the scenarios, 
tasks, actions, and objects are all sufficient to cover this situation. 

2.3.2 Information Flow Considerations 

After demonstrating as far as possible the completeness of the set of param- 
eters used to describe the system, it is necessary to perform an information 
flow analysis on the system. Since the set of actions performed is dependent 
on the scenario, it may be necessary to consider each scenario separately for 
information flow. The information flow analysis for each scenario can then 
be performed according to the rules given in section 2.2.1. 

2.3.3 Need-to-Know Considerations 

It is not enough simply to consider the information flows that are directly 
involved in each action (this is discussed further in section 2.4). It is also 
necessary to take into account what kind of information is needed for an agent 
to be able to determine what action to take. Therefore, for each scenario and 
each task, at least a rough description must be made of the criteria for taking 
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actions. For each criterion, it is necessary to determine what information an 
agent needs to know in order to decide whether that criterion is met. At this 
point, it is helpful to decide for each scenario a way to partition tasks among 
agents. Completeness of the set of actions must be rechecked to make sure 
that each agent receives the information he needs to perform his tasks. 

2.3.4 Trustworthiness Considerations 

After partitioning tasks among agents, and determining the information flows 
in the system for each scenario, it is necessary to ask whether any agents will 
be given a dangerous amount of information (as defined later in section 2.4) 
in any scenarios. If so, then if possible, the tasks must be repartitioned. If 
it is not possible to repartition the tasks to eliminate dangerous concentra- 
tions of information, then other steps must be taken to decrease the risk 
of malicious agents. Among these steps are: (1) adding more auditing to 
increase the chance that malicious agents will be caught, and (2) increasing 
the qualifications for the involved agents, which means choosing agents that 
have more extensive background checks and evidence of trustworthiness. 

2.3.5 Multilevel Considerations 

For multilevel systems, other checks must be made to be sure that the in- 
formation flows created to satisfy need-to-know constraints — the "internal" 
notion of security — also respect externally-imposed sensitivity levels — the 
"external" notion of security. There are two such external constraints that 
must be respected: (1) an agent must not receive labeled sensitive informa- 
tion unless he is cleared for it, and (2) information may flow from labeled 
external inputs to labeled external outputs only if the label of the output is 
greater than or equal to the label of the input. These multilevel considera- 
tions further restrict the possible clearances of system agents and the possible 
information flows that the system can permit. A mismatch between external 
and internal notions of security can occur in several ways: 

1. The necessary clearances of agents may not be the same. This is eas- 
ily resolved by requiring that agents meet both internal and external 
clearance requirements. However, this resolution may run into practical 
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considerations, since there is a limited supply of high-clearance users, 
and there may be other factors restricting what agents are available. 

2. System functionality may inherently involve flows that violate the ex- 
ternal security constraints. If this is the case, it is a very serious sit- 
uation that has no easy remedy. In some circumstances, it may be 
enough to interpose a human reviewer for data that leaves the system 
that may be "contaminated" with data of higher or incomparable sensi- 
tivity. The reviewer would have to take into account the internal data 
flows determined for the system in order to estimate the amount of 
sensitive information that could have leaked into an output. If the use 
of a human reviewer is impractical, either because timeliness prohibits 
a lengthy review process, or because it is too difficult for a human to 
judge the seriousness of the leaks, then it may be necessary to redesign 
the system or its interface with other systems. In some circumstances, 
it may help to encrypt the outputs so that they can legitimately be sent 
out at a lower security level than the sensitivity of the data it contains. 

3. External security may be insufficient to enforce internal security re- 
quirements. The internal trustworthiness analysis determines that agents 
should be prevented from learning certain information, depending on 
the tasks the agents must perform and the clearances of the agents. 
However, if the external label for this information is unclassified, then 
it is impossible to prevent the agents from learning the information 
through external means. This is another very serious circumstance. 
There are several responses to such a situation. First, it may be possi- 
ble to introduce new categories that are respected by external systems 
that will make sure that the sensitive information does not make it to 
agents that might misuse it. Another possibility is that the external 
information can be encrypted, so that external access control is not 
needed. A final possibility is just that a higher level of trust must be 
demanded of the agents, so that agents with higher degree of trustwor- 
thiness must be used. 

2.3.6    Automated Enforcement Mechanisms 

Some systems, such as LOCK [FHOT89], provide support for role-dependent 
access control, and these can be adapted to enforce task-based access con- 
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trol. In more standard systems, it is possible to use mandatory access control 
mechanisms (MAC) to enforce information-flow restrictions and to use dis- 

cretionary access control to restrict users further so that they can perform 
only actions that are relevant to their tasks. One problem with using MAC 
to enforce a nonstandard policy is that it is necessary at all times to keep 
track of the externally defined sensitivities of data. If the set of external 
levels is small enough, and the set of possible internal levels is rich enough 
(for example, if the number of category is large enough), then it is possible to 
encode both internal and external security labels in the same label field. This 
approach, of course, assumes the compatibility of the internal and external 
notions of sensitivity. If the two notions clash, then special provisions must 

be made ahead of time, as described above. 

2.4    A Simple Model for Need to Know 

A security policy for sensitive information is an attempt to balance people's 
needs for information to do their jobs against the risks of misusing that in- 
formation. The approach taken in the military has been to assign a clearance 
(or access rights) to each authorized agent that reflects what type of sensi- 
tive information that agent can see. An agent's clearance is based on two 

considerations: 

1. The agent's need to know. 

2. The agent's trustworthiness. 

Roughly speaking, an agent's trustworthiness has been indicated by the 
agent's hierarchical level (either unclassified, confidential, secret, or top-secret), 
while his or her need-to-know has been indicated by a combination of his or 
her assigned security categories, working groups, or file-by-file discretionary 

access rights. 
In the traditional view of security, an agent's trustworthiness is not as- 

sumed to change dynamically, so any changes to his or her access rights is 
due either to changes in need-to-know, or to a change to the balance between 

need-to-know and security. 
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2.4.1    What Is Need-To-Know? 

In military security, access to information (as well as other kinds of access) is 
governed by the principle of least privilege. Following this principle, an agent 
must be given the least information necessary to do his or her job. Before 
information is given out to the agent, it must be established that the agent 
has the appropriate need-to-know. 

In most work on theoretical security, the criteria for deciding need-to- 
know are left outside of the theory, because it is considered too complicated 
and too subjective to submit to rigorous analysis. But it is not difficult to 
come up with a simple model of need-to-know that nonetheless illustrates 
many of the issues involved in situation-dependent security. 

Situations and Actions 

Our model of need-to-know starts with the case of a single agent with a 
job to perform. At any moment, the agent is in some situation and must 
make a decision about what action to perform. There is one or more actions 
that the agent could perform that would be considered acceptable for the 
situation, while other actions would not be acceptable for that situation. 
The agent's responsibility is to choose some acceptable action and perform 
it. For simplicity, we ignore for now the complications arising from multiple 
agents, and we also ignore the fuzziness inherent in knowing what is an 
acceptable action for a given situation. 

Knowledge and Sufficient Knowledge 

The agent's job is complicated by the fact that he does not know completely 
what the situation is. All he knows is some collection of facts about the 
situation: the facts that he is allowed to learn, based on his clearance. There 
may in general be many possible situations consistent with his facts. In order 
to do his job, he must (if possible) find an action that would be acceptable 
for any situation consistent with his knowledge. 

In terms of this simple model, we can say that an agent's knowledge 
at any time is sufficient for his task if there is some action that would be 
acceptable for any situation consistent with his knowledge. 
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Formalizing Need-to-Know 

We formalize the notions that we have introduced so far by using the following 

primitives: 

• S : the set of possible situations. In the following, the word "situation" 
refers to a complete specification of the relevant facts about the domain 
that the agent must make judgements about. Both the state of the 
computer system the agent is working with and facts about the outside 

world may be facets of the total situation. 

• (- : the satisfaction relation. If $ is any statement about a situation, 
then the expression «h$ will be said to hold if $ is a true statement 

about situation s. 

• K, : the set of possible knowledge states of the agent. We will leave 
the precise nature of these knowledge states unspecified for the sake of 
generality. The simplest model of an agent's knowledge at a given time 
would be simply the data he has received up to that moment. However, 
such a model neglects the inferences that the agent might draw from 
the data, some of which may not be logical deductions but instead are 
likely interpretations of the data. The use of a more general notion of 
knowledge opens up the possibility that the agent's "knowledge" can 

be mistaken. 

• Bk : the belief predicate for an agent with knowledge state k. If $ is 
any statement about a situation, then we will say that Bk($) holds if 
an agent with knowledge state Bk would believe that <fr holds. 

• A : the set of possible actions. 

• 1Z : the set of possible results of actions. 

• ~» : the consequence relation connecting situations, actions and results. 
The expression shö^r will be said to hold if in situation s, action 

a "leads to" result r. 

For simplicity, we. will ignore how results relate to changes in the situa- 
tion, and instead assume that the notion of a good or bad result takes 
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into account such changes of situation. Also, we are ignoring nondeter- 
rainism in the transition relation, assuming that an action in a specific 

situation leads to a specific result. 

• acceptable : a predicate on results indicating that a result is desirable 
for the current situation. We will use the notation s h acceptable(r) to 
indicate that result r is acceptable for situation s. 

Some Definitions In terms of the primitive notions introduced above, we 
can define some of the terms needed to discuss need-to-know and situation- 
dependent security. 

Let us first extend the notion of acceptability to actions as well as results 

as follows: 

Definition: acceptable(a) = 3r G H  :  a ~> rkacceptable{r) 

In other words, an action is acceptable if it leads to an acceptable result. 
As with acceptable results, an action is only acceptable with respect to a sit- 
uation. We will write s h acceptable(a) to indicate that action a is acceptable 

in situation s. 
In the next two definitions, we can classify knowledge states according to 

how accurately and how completely they reflect the situation. 

Definition:  k £ fC is accurate for situation s if for all situa- 

tional statements $, s h Bk($) -> $• 

Knowledge state k is accurate for a situation if everything believed by an 
agent with that knowledge is true of the situation. If a knowledge state is 
inaccurate, that means that it contains partially false knowledge. 

Definition: k £ JC is conservative in situation s if for all actions 
a, s h Bk(acceptable(a)) —> acceptable(a). 

Introducing the idea of conservative knowledge takes into account that 
it is not actually necessary for an agent's beliefs to be completely accurate, 
as long as they always err on the side of safety — that is, as long as the 
inaccuracy does not lead him to take an unacceptable actiom For example, 
if a person trying to repair a lamp believes that touching any bare wire 
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will electrocute him, then such a belief may be inaccurate—it may be the 
case that some bare wires, such as the ground wire, are perfectly harmless. 
However, the inaccurate belief errs on the side of safety, and therefore is a 

conservative belief. 
Another important property of knowledge states is decisiveness. Obvi- 

ously, if the agent does not know enough to decide what action to take, then 
he is unable to do his job, even if his knowledge is perfectly accurate (that is, 

he does not have any false knowledge). An agent's knowledge is said to be 
decisive if it allows him to figure out some action to take that is acceptable. 

Decisiveness is formalized as follows: 

Definition: k € /C is decisive if for some action a, Bk(acceptable(a)) 

holds. 

Finally, we can define sufficiency of a knowledge state for a given situation: 

Definition:  k £ K. is sufficient for situation s if k is decisive 
and k is conservative for situation s. 

By this definition, knowledge is sufficient for a situation if (1) it allows 
the agent to decide on at least one action, and (2) whatever action the agent 
decides to take is actually acceptable for the current situation. 

Necessary Knowledge and Need-To-Know We have said when an 
agent's knowledge is sufficient for him to perform his job, but we have not 
said when it is necessary, which is the basis for need-to-know restrictions. 
We will say that a particular fact (situational statement) is necessary for the 
agent to know if, whenever he has sufficient knowledge to perform his job, 
he will be able to deduce that fact. In other words: 

Definition:   <& is necessary for situation s if for all k € IC, 

sufficient(k) -> Bk($). 

Naively, one might think that applying the principle of least privilege, 
that an agent should only be given information if it is necessary for his or 

her job. We can formalize this as follows: 
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Definition: k G fC conforms to the principle of least privilege 
for situation s, or is necessary, if for all situational statements $, 

s h Bk($) —> necessary($). 

Unfortunately, this interpretation of the principle of least privilege often 
cannot be used in practice, for the simple reason that necessary knowledge 
may not be sufficient. In other words, it could be that for some situation s: 

The principle of least information fails for s if VA; € K, : s h 
necessary(k) —■* ->sufficient(k) 

In other words, in some situations you need to know something that you do 
not need to know. This could be illustrated with a simple example. Consider 
a scenario in which an agent must choose between two possible buttons, a red 
button and a green button. There are four possible situations: A, B, C, or 
D. In situation A, only the red button is acceptable, in situation B, only the 
green button is acceptable, and in situation C, either button is acceptable. 
In situation D, the agent should not push either button. 

Now consider the agent's knowledge in situation C. The agent could be 
told any one of the following four statements: 

1. The red button is acceptable. 

2. The green button is acceptable. 

3. Both buttons are acceptable. 

4. At least one of the two buttons is acceptable. 

The first three statements fail to conform to the principle of least privilege. 
It is not necessary for the agent to know that the red button is acceptable, 
since he could take an acceptable action (namely, push the green button) 
without knowing that the red button is acceptable, as well. Similarly, it is 
not necessary for him to know that the green button is acceptable, and it is 
certainly not necessary for him to know that both buttons are acceptable. 

The last statement in the list above contains only information that the 
agent needs to know. But it is not sufficient, since it does not allow him to 
make a decision: he doesn't know whether to push the green* button or the 
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red button. If the agent is to be given sufficient information to do his job, 
he must be given some information that is not necessary. 

We can amend the naive formulation of the principle of least privilege 
by interpreting it as the principle of minimal privilege, with the following 
definitions: 

Definition: For kuk2 € K, we say that fcj < k2 if for all 
situational statements $, Bkl($) —► Bk2{$) 

This definition says that knowledge state kx is less than or equal to knowl- 
edge state k2 if every statement known by an agent with knowledge &i would 
also be known by an agent with knowledge state k2. In terms of this par- 
tial ordering on knowledge states, we can define what is minimally sufficient 
knowledge for a given situation. 

Definition: k e K, conforms to the principle of minimal privi- 
lege for situation s, or is minimally sufficient, if s h sufficient(k) 
and for all k' e £, if s h sufficient(k'), then k < k'. 

The principle that an agent should be given a minimally sufficient amount 
of information, has one problem: there may be several different knowledge 
states that are both minimally sufficient. Therefore, the principle does not 
uniquely specify what information should be given to the agent. In order 
to address this issue, it is necessary to re-examine the reasons why agents 
should be given a minimal amount of information, in the first place. 

2.4.2    Temptation and Trust 

The reason that one tries to minimize the amount of information given to 
an agent is the risk that the agent might misuse the information (or else, 
inadvertently pass the information along to someone else who might misuse 
it). But what, exactly, does it mean to misuse information? 

This is a complicated question, but once again we will try to illustrate 
some of the major issues by constructing a simple model. The issue of misuse 
of information arises when one considers the possibility that an agent may 
be motivated by goals other than doing his job well. These other motiva- 
tions need not be as nefarious as treason or greed. An agent could also be 
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motivated by simple curiosity, or the thrill of getting away with something 
(as hackers often are). 

It is obviously impossible to construct a rigorous model of human moti- 
vations, so instead we will just postulate their existence. We formalize it in 
terms of the temptations, risk and plausibility. 

For each k G K let temptingk is a predicate on the set of results 
71. We say that temptingk(r) holds if it the agent with knowledge 
k might be tempted to try to achieve result r. 

Let undesirable be another predicate on the set of results 71. 
We say that undesirable(r) holds if the agent will try to avoid 
result r. For example, punishment is an undesirable result. 

For each k G JC, let Pk be the plausibility predicate for an 
agent with knowledge k. We say that Pjt($) holds if an agent 
with knowledge k would believe that statement $ is plausible. 
This is much weaker than believing it is true. 

We can define risky actions in terms of plausibility and undesirable results: 

Definition: riskyk(a) = Pk(3r G 71  :  a ~> rkundesirablek(r)) 

This definition says that an action is risky for an agent if it is plausible 
(not necessarily certain) that it will lead to an undesirable result. In a more 
sophisticated model, whether an action is considered risky or not would be 
relative to the temptation: if an action is very tempting, then it would take a 
large risk to deter an agent from taking the action, while a lesser temptation 
could be deterred by a smaller risk. However, in our simplified model, we 
will only consider the extreme case of risks that the agent will avoid in all 
circumstances. 

Now, we can extend the notion of a temptation to an action as follows: 

Definition: temptingk(a) = Pk(Br G 71 : a ~> r&temptingk(r)) 

This definition says that an action is tempting if it is plausible that it 
might lead to a tempting result. Why, in the definition of temptations, is it 
important that plausibility, rather than belief, be used? The reason is that 

27 



people do not have to be assured of a reward in order to take an action; it 
is enough that that there be a plausible chance for a reward. For example, 
if a thief is walking through a building, looking for valuables, he will try a 
door on the plausible assumption that it might be unlocked, and that there 
might be something valuable behind it. He might have no reason to believe 
that the door is unlocked, but he could still decide that it is worth a shot. 

In these terms we can say that a knowledge state is dangerous if there is 
some action that is tempting, but not risky. 

Definition: dangerous(k) = 3a € A :  temptingk(a)k^riskyk(a) 

This definition calls a knowledge state dangerous if the agent with that 
knowledge state would be tempted to do some action motivated by something 
other than the job he has to perform. This definition doesn't consider the 
harm that an agent might do. In some cases, one might allow an agent to 
be tempted, in the hopes that the agent could be caught. For such a trap 
to work, it would have to be the case that the agent's beliefs about the 
plausibility of his getting caught would have to be inaccurate. One way to 
accomplish that is to have alarms that are set off by suspicious behavior, and 
keep the existence of these alarms secret. 

If there is no reason to suspect that there is a malicious agent involved, 
then the goal of system security designers should be to try to avoid putting 
agents into temptation. In other words, try to keep the agents from having a 
dangerous amount of knowledge. We are now in a position to give a definition 
of the trustworthiness of an agent: 

Definition: An agent is untrustworthy in situation s if for all 
knowledge states k G /C, s h sufficient(k) —> dangerous(k). 

In other words, an agent is untrustworthy in a given situation if it is 
impossible to give the agent sufficient information for him to do his job 
without also making some actions tempting. 

2.4.3    Summary and Conclusions 

Although we are using a very simplified model of an agent's behavior, there 
are a few important conclusions that can be drawn from it. Below is a 
summary of the model and its conclusions. 
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1. An agent has sufficient knowledge to do his job if he is able to determine 
an acceptable action to take. 

2. It is not necessary for an agent's knowledge to be accurate, as long as 
it is conservative—that is, as long as it errs on the side of safety. 

3. An agent needs to know a fact in a given situation if it is impossible to 
give the agent sufficient knowledge without letting him know the fact. 

4. In general, there is no unique smallest amount of information that can 
be given to an agent that is sufficient for him to do his job. 

5. Trustworthiness is situation-dependent. It is not an all-or-nothing 
thing. An agent may be completely trustworthy in normal circum- 
stances, but will be tempted to misbehave in some situations. For 
example, if suddenly there would be a large financial reward for taking 
a certain action. 

6. Certainty of the result is not necessary for an action to be tempting for 
an agent. It is not enough to prevent an agent from knowing sensitive 
information for certain. A plausible guess that an agent can make 
will sometimes be as damaging as a real leak of information. The most 
extreme case is of course passwords: if an agent believes some passwords 
to be plausible, he might try them out. To avoid the temptation of 
trying out passwords, password guidelines should be announced so that 
everyone knows that easily guessable passwords are not being used. 

7. Certainty of the result is not necessary for an action to be considered 
risky for an agent. 

8. Increasing the risk associated with misbehavior (for example, by audit- 
ing) can decrease the temptation and increase the trustworthiness of 
the agent. 

Future Work on Need-To-Know 

There is much work that needs to be done in order for a theory of need- 
to-know to have practical benefits in the security of adaptive systems. The 
biggest problem is that so many of the basic elements of the theory are 
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unknowable in general, such as what results an agent would find tempting 
and how much of a risk an agent would be willing to take. For the work to be 
applied to actual systems, guidelines must be developed for making informed 
estimates for these unknown factors. The following list describes some of the 
work that must be made to make the theory more realistic and more usable. 

• Classification of types of risks, temptations, and uses of knowledge. 

There are different uses that a malicious agent can find for knowledge. 
Some knowledge, such as passwords, are keys that give an agent more 
power. Other knowledge is a commodity that can be sold (for example, 
to a foreign government), and is not used directly by the agent. Finally, 
knowledge can increase the certainty about the results of actions, thus 
making some actions more tempting and others less tempting. In order 
to have a more complete understanding of security, it would be helpful 
to have a classification of the different uses of knowledge and the most 
effective measures (auditing, or access control) that can be used to 
prevent its misuse. 

• Extending the model to allow for risks to be relative to the temptation. 

• Develop the connections with 

— Lattice-based security. 

— Information flow. 

— The aggregation problem. 

• Develop methodology/tool for 

— Analyzing need-to-know, risks, and temptations. 

— Partitioning information to minimize temptations. 

— Creating roles that require sufficient knowledge that is not dan- 
gerous. 

— Identifying situations where trust breaks down. There are several 
aspects of this that might be considered: 

* Analysis before fielding to identify situations that might lead 
to a breakdown of trust. The security policy and enforcement 
mechanisms should take such an analysis into account. 
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* Automated detection of dangerous situations, so that an alarm 
can be given. 

* The use of traps for malicious agents. To the extent that it 
can be determined ahead of time which situations are most 
likely to tempt an agent to betray his trust, it may be possible 
to set up a trap to catch such agents. 
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Chapter 3 

Task 2: Maintaining Security 
in Adaptive Systems 

3.1     Introduction 
When switching between configuration modes that involve some change in 
security enforcement, there is the problem of ensuring that all of the mech- 
anisms to support security are in place. The aim of this task is to outline 
a procedure that helps designers or developers, or evaluators, to check, sys- 

tematically, that everything is indeed in place. 
We first remark that we are talking about functional adaptation (con- 

figuration) that has major impact on security enforcement. This need not 
necessarily involve a change to the security policy in the sense of who is 
cleared to see what, though these adaptations are included here. Adapta- 
tions involving clearances were the subject of Task 1, where their special 
problems were analyzed in detail. 

We will begin by identifying more precisely the type of adaptation that 
is under study. After that, we will explain why a problem arises, and what 
makes this situation different from the usual problems with dynamically re- 
configurable systems that do not involve adaptive security. Finally, we will 
elucidate our approach to handling this problem. 
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3.2    The Kind of Adaptation Involved 

We will illustrate the kind of adaptation at issue here with examples. Suppose 
that we have a system with four modes: normal, extraordinary, training, 
and maintenance. We can think of this as a system involving ground bases, 

aircraft, and C3I. 
Consider a processor that handles both high and low sensitivity requests. 

Suppose that in normal mode of operation, a scheduler uses a fixed time- 
slicing algorithm and thereby avoids any covert timing channel. In a crisis, 
we are prepared to tolerate a greater rate of possible information leakage 
(it may be also that certain high data in a crisis does not have much value 
for long). So suppose further that when the system makes the transition 
from normal to extraordinary, the scheduler algorithm changes to a more 
efficient algorithm driven by criticality, where the high requests are the most 
critical. Thus in this new mode, we have a potential covert timing channel. 

Consider next an encryption component that uses long encryption keys 
when the system is in normal mode of operation. When switched to 
extraordinary mode, the encryption is performed with shorter keys, pro- 
viding less security. 

Suppose again that highly sensitive material is stored on disk and avail- 
able in normal or extraordinary mode. When changing to training (or 
maintenance) mode this sensitive data must be removed and less sensitive 
data must be substituted for the original data. An example of this would be 
the case where locations of friendly and enemy positions are in a database 
on the disk, and we wish this knowledge to be secret, but we wish to train 
people on functionally similar but fictitious data. 

A final example of security-relevant reconfiguration that occurs as a re- 
sult of a mode change, concerns the re-routing of messages. Sensitive mes- 
sages that would be sent over secure channels in normal mode may be sent 
encrypted, or even unencrypted, over insecure channels in extraordinary 
mode. Circumstances that could warrant this reconfiguration be generated 
from among the following: high time criticality, overloading of secure facili- 
ties, unavailability of secure facilities, etc. 

We have just described four cases of security adaptations that occur along 
with mode changes. We will explain what sets this sort of adaptation apart 
from the more standard sort of dynamic reconfiguration. After that, we 
address the main concern of this chapter - what to do about the security 
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problems. 
Systems without adaptive security are currently built that have various 

dynamic reconfigurations incorporated, like re-assignment of processing in 
the case of processor failure (fault tolerance), or message re-routing in re- 
sponse to load, to achieve maximum throughput. But in the usual case, the 
security enforcement on information, users, and processes does not change. 
The designers must ensure that the proper, constant, security is enforced 
across all configurations. Examples of what must be ensured are: that en- 
cryption is performed for designated message and channel types; that MAC 
and DAC are checked; that the security mechanisms like the form of MAC 
and DAC are consistently interpreted and enforced in disparate systems. 

It is the responsibility of the designers of these systems to impose system- 
wide methods of doing things so that when the system is reconfigured, se- 
curity needs are met. The uniformity of the requirements (a message of 
such-and-such a type must always be sent over a channel of such-and-such 
a type) is of some assistance in designing these systems, and motivates the 
solutions. Providing these services is certainly an important and difficult 
issue, but it is an issue that is. not specific to adaptive security. 

What is our responsibility, is to present a procedure that will meet new 
problems that are consequences of the adaptive nature of the security — the 
sorts of problems that arose in the examples above. We will deal with this 
in the next section. 

We note however that in some circumstances there is some overlap be- 
tween the adaptive security problems and the conventional ones. For exam- 
ple, if fault-tolerance causes a disk used for secret data to be re-assigned to 
unclassified data then while no inherently security-related mode change has 
occurred, there are adaptive security consequences. We will discuss how to 
treat these cases in section 3.3.2. 

3.3    Maintaining Security in Adaptive Sys- 
tems 

Our aim here is to describe a systematic procedure that will help designers 
or evaluators to ensure that all the security measures have been taken for an 
adaptive system. We identify two key goals in handling the adaptive security 
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problem: 

1. Ensure that after a transition, the system is in a consistent, legal state 
(from the security point of view) for the new configuration mode. This 
amounts to meeting an initial condition for a mode. 

2. Ensure that the transition itself does not create any security violations. 

Consider the first of these in the context of our some of our examples 
above. 

When changing back from extraordinary mode, in the case where short 
encryption keys have been used, to normal mode, care must be taken to reset 
all the mechanisms - e.g., if there is a table of pre-selected short keys, it must 
be emptied and refilled with longer keys. 

If a disk used for low-sensitivity data is to be re-assigned to high-sensitivity 
data, all rights to interact with the disk must be re-set correctly. 

When making the change that allows sensitive messages to be re-routed 
across insecure channels, various tables have to be re-written to perform 
this. This must be done at all appropriate points in the network, and done 
carefully so that just the designated insecure channels are used. 

Finally, suppose in a crisis (not one of our four examples here, though if 
added it would presumably be reachable only from extraordinary mode) 
we reset the access control mechanisms to allow a user access to information 
he is not normally allowed to see. Whatever solution (see chapter 2) is used, 
there are potentially many entries in the authentication databases and/or 
files that must be set (including audit logging). 

Now let us look at item 2 above. The transition action between modes 
may result in a legal state, in the above sense, yet in itself cause a security 
breach. 

The archetypal example of this is failure to sanitize. We gave an example 
above where the system changes from normal mode to training mode and 
a disk has to be sanitized. Suppose that the disk was originally labeled 
SECRET, and is re-labeled UNCLASSIFIED. Suppose now that the disk was 
not sanitized, so that UNCLASSIFIED users can see SECRET information 
left on the disk. The system is in a properly configured state, and there is 
nothing in the state of the system that can indicate that the data on the disk 
is SECRET — put loosely, the system cannot "know" that the data bits on 
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the disk constitute SECRET data. The breach of security occurred during 
the transition, in placing the label UNCLASSIFIED on an object containing 
SECRET data. 

We see that both items together cover what is needed to ensure secure 
functioning in the face of adaptivity. In the following subsection we will 
outline how to apply this method. 

3.3.1    Systematic Analysis of the Security of Adaptive 
Systems 

The first step in the analysis is to identify the various configuration modes. 
For example, we identified four in our example above. The modes need 
not necessarily have names that are recognized on, or incorporated into, the 
system, though it would be useful if that were the case. We also identify the 
possible transitions between modes. There will not necessarily be a transition 
between any two modes. 

We pause to remark on the number of modes involved. As discussed 
above, these are not all possible functional configurations that a system could 
be in. The number of modes that involve security adaptations of the kind 
we are concerned with, will be small enough that examination of all of them 
is feasible. 

Much of the system will remain unchanged when in the various modes, 
and this common part will be analyzed once. Then, for each mode, we 
address the two items listed above. 

The first item — the list of things that have to be achieved after a transi- 
tion to a mode — is associated with the mode in question. Note that this list 
will be associated with the mode, rather than the particular transition into 
the mode (there may be more than one). This is because the list depends on 
the mode (what its proper states are), and not how the mode was entered. 
It is true that achieving those goals will be more or less work depending on 
which mode the system came from (in some cases nothing may need to be 
done), but breaking the analysis down further will complicate the picture, 
while not usually providing much benefit. 

The second item — the list of things that have to be done to ensure that 
the transition itself does not generate any security violations — is associated 
with particular transitions. This list will include things like the requirement 
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that a disk be sanitized. We remark that not all of these procedures can 
necessarily be executed automatically on a computerized system. It may be, 
for example, that on transition from normal to maintenance mode, the disk 
in our example must be physically removed and subjected to sanitization 
outside the computer system. The full instructions for this procedure will be 
detailed in the analysis component associated with the transition. 

The analyst uses this framework to cover systematically the special secu- 
rity needs of an adaptive system. In chapter 4, we will describe how a system 
is modeled according to this method of decomposition. We will use as an 
example the design tool RDD-100 and show how to attach the information 
described here to a model of the system being studied. 

3.3.2 Other Adaptations That Have Security Conse- 
quences 

At the end of section 3.2 we mentioned that certain other functional adap- 
tations that do not inherently have anything to do with security may have 
adaptive security consequences. An example of this would be unpredictable 
fault-tolerance reconfiguration that requires a disk previously dedicated to 
SECRET material to be re-assigned to UNCLASSIFIED material. The issues 
discussed above arise also in this case. To handle this, we do not introduce 
any new modes into the above model, but we add a further transition from 
a mode to itself (for any mode in which this can occur). We attach the same 
sort of information to this transition, that we would to any other. To uncover 
any of the exceptional adaptations of this kind, the analyst must check all 
of the ordinary adaptations to ensure that all potential security problems 
are handled by pre-defined mechanisms. Some kind of broad classification 
scheme will be needed to avoid an excessive number of cases. Any problem 
found will be handled by adding a further transition as described. 

3.3.3 Large Scale Systems 

We briefly mention another setting that poses adaptive security problems. 
This setting involves systems that are outside the range of systems that 
this project is concerned with. When systems (e.g. a WAN) become so 
large that no centralized component has a full description of the system or 
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even knows the extent of the system, special techniques have to be used to 
keep the system in some sort of acceptable configuration. This applies to 
security also - heterogeneous components with different security polcies may 
be connected, and moreover, security policies will evolve with time. This 
problem will become more important in the future, and is an important 
research topic. 
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Chapter 4 

Task 3: Risk Assessment 

4.1 Introduction 

In this chapter we describe how to assess risk for adaptive systems. There are 
currently several methodologies for risk analysis of (not specifically adaptive) 
systems. Our approach is to take a recognized methodology and enhance it 
to encompass adaptive systems. We will use the decomposition described 
in chapter 3 to handle the complexity of the multiple operational (security) 
modes of an adaptive system. Moreover, this decomposition provides a struc- 
ture that surfaces the new risks to which adaptive systems are vulnerable, as 
described in Chapter 3. 

We will begin by briefly describing two major risk analysis methodologies, 
one quantitative and the other not. The non-quantitative methodology will 
be used in our work here. We later suggest linking this analysis with the 
quantitative approach as a sensible future goal. 

4.2 Background to Risk Assessment 

Current results on risk assessment primarily consist of management guide- 
lines for controlling risk in the absence of quantitative means for measuring 
it. There are software tools for enforcing managerial policy, though, and for 
making quantitative estimates of risk. There are two different approaches to 
risk management that we will describe here, one derived from CSC-STD-003- 
85 [Nat85] (the "Yellow Book"), and the other incorporated into the System 
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Security Profiles [Fin94] of the NSA System Profile Group. 

4.2.1    Yellow-Book Style Risk Analysis 

The Yellow Book requires computing a risk index for an intended system, 
assigning a security mode to the intended system operation, and then using 
a trusted computing base for the intended system whose Trusted Computer 
System Evaluation Criteria ("Orange Book") [Dep85] division and class rat- 
ings meet minimum standards that the Yellow Book sets as functions of the 
risk index and security mode. The process for doing this has been changed 
and simplified slightly by later publications such as [Dep88]. The risk in- 
dex is generally the intended system's data sensitivity rating minus its user 
clearance rating. See [Nat85] for more details. 

Landwehr and Lubbes [LL85] of the Naval Research Laboratory developed 
extensions to the Yellow Book risk assessment process, creating an analysis 
method that incorporates further relevant information — "processing capa- 
bility" factors (see [LL85] for details). 

ANSSR 

The Analysis of Networked Systems Security Risks (ANSSR) tool [BCK90, 
Bod92, BC93] incorporates and automates basic Yellow Book, processing ca- 
pability, and networking considerations analyses. It also incorporates consid- 
eration of particular attack scenarios, with considerations such as a potential 
penetrator's potential gain and risk of apprehension. 

ANSSR offers three types of analyses, requiring progressively more detail 
about the system being analyzed: Yellow Book; Extended Yellow Book; and 
Scenario Analysis. This last type of analysis requires the analyst to enter 
event-sequence scenarios (e.g., user goes bad, user logs in, etc.). The analyst 
makes numerical estimates such as the sensitivity of data exposed by an 
event, or the effort required by an attacker of a given capability, etc. ANSSR 
calculates likelihoods of events in relation to system states. ANSSR also 
makes estimates about the expected losses in a time period (normally a 
year), based on its model. 
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4.2.2    System Profile Style Risk Analysis 

The risk analysis in System Security Profiles makes no attempt to compute 
risk indexes, and does not involve quantitative estimates of risk. The analysis 
comprises the compilation of all known system weaknesses together with 
related security concerns, and this is presented in a highly structured way. 
The System Profile approach also covers risks other than those of disclosure 
from deliberate attack (the only risks considered in ANSSR) — e.g., the risk 
of loss of service from physical damage. 

In more detail, the System Profile approach calls for listing all known 
system weaknesses, and for each weakness listing the following: 

• which engineering tests establish the existence and properties of the 
weakness; 

• all known vulnerabilities resulting from that weakness; 

• all known threats exploiting that weakness; 

• an assessment of whether the weakness is tolerable, with the reasons 
for this assessment; and 

• recommendations on system operation (e.g., special restrictions) for 
dealing with the weakness. 

The System Profile approach treats a vulnerability as arising from the com- 
bination of a weakness and a threat capable of exploiting that weakness. 
For each vulnerability, it calls for describing the vulnerability, assessing the 
risk posed by that vulnerability, and making recommendations on what, if 
anything, could be done to minimize the risk posed by that vulnerability. 

The NSA System Profile Group has built RDD-100 (see [Asc93]) schema 
to provide tool support for this analysis. The parts of a System Profile 
description of risk are pieces of text that are implemented as attributes of 
elements in an RDD-100 database. RDD-100 creates element-relationship- 
attribute models, so the text fragments describing risk properties are at- 
tributes of elements linked to each other by various relationships. In the 
RDD-100 System Profile implementation, for example, an element of type 
Weakness is linked to an element of type Vulnerability by a results in 
relationship. See Fink [Fin94] for details. 
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The System Profile approach is simpler and more straightforward than the 
quantitative approach, and so is the appropriate starting point for the first 
development of our methods for handling adaptive systems. The description 
here was intended to give a general view of the System Profile approach. 
Further description of relevant details will be given in the next section, where 
we concentrate on extending the approach for our needs. 

4.3    Security Profiles of Adaptive Systems 

This section describes how to create a security profile of an adaptive system. 
This method is based on the system security profiles proposed by the Sys- 
tem Profile group at NSA. Section 4.3.1 provides necessary background on 
system profiles as proposed by NSA. Section 4.3.2 describes how to extend 
this approach to describe an adaptive system in a way that focuses on and 
highlights the system adaptations. This section also describes how the se- 
curity analysis is added to the profile. Finally, section 4.3.3 describes how 
RDD-100 can be used to support this process. 

4.3.1     System Security Profiles 

System security profiles highlight and document the essential security fea- 
tures of a system. Ideally, a profile of a system is produced in concert with 
the development of the system so that the profile is available for use by 
system integrators in making informed decisions about the suitability of or 
proper use of the system. The effort to produce a profile may be limited in 
comparison to a formal Orange Book evaluation, but a profile is expected to 

be available in a more timely manner. 
The system profile group of the NSA has proposed a standard form for and 

a methodology for producing system profiles. Key elements of this proposal 
are described here; for more details see the draft report [Fin94]. 

A profile contains descriptions of the security policy for the system, a 
description of the system architecture, a description of the systems security 
services, assessments of these services, descriptions of the assurances that 
the system offers, descriptions of the support services the system requires, 
a system vulnerability assessment, and guidance as to how to operate the 
system securely. Of these, the system vulnerability assessment is considered 
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to be the most important. 
A system profile is described in terms of elements and relationships be- 

tween these elements. For example, the system architecture is described in 
terms of the system components; components are decomposed into subcom- 
ponents. The system vulnerability assessment is organized in terms of sys- 
tem weaknesses, threats to the system, and system vulnerabilities. A system 
weakness that is exploited by a system threat results in a system vulnerabil- 
ity. The system vulnerabilities are connected to the system description by 
attaching weaknesses to components. In such a case, a component is said to 
exhibit the weakness. 

Each element of a system profile also has attributes associated with it. For 
example, the description attribute of a system weakness describes a problem 
with or a concern about the system. The description attribute of a system 
threat describes the capabilities, intentions, and attack methods of an adver- 
sary. A system vulnerability has three attributes of interest: a description, a 
recommendation, and a risk. The description attribute tells how to perform 
a particular attack and what the results will be. The recommendation at- 
tribute provides recommendations for fixes. The risk attribute describes the 
ease of exploitation of the vulnerability, opportunities that may exist to ex- 
ploit the vulnerability, and the risk that an exploitation of the vulnerability 
will be detected. 

4.3.2    Profiles of Adaptive Systems 

We are concerned with adaptive systems in the sense of chapter 3. An adap- 
tive system will be described in terms of its modes of operation and the 
transitions between these different modes. 

An adaptive profile organizes information in three different ways. First, to 
understand the security of a mode, it is necessary to understand which parts 
of the system have been adapted for that mode and for each adapted piece 
how the piece operates in this mode. The first goal of our security analysis is 
to focus attention on the security of the system when it is operating in each 
mode. Second, to understand the security of transitions between modes, it 
is necessary to look at the many different changes in many different parts of 
the system that may occur. Another goal of our security analysis is to take 
a look at the effects of these transitions and the security issues that arise 
during a transition. Third, there may also be many parts of*a system that 
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do not adapt. These parts of the system will be common to all modes and 
the security concerns for these parts are less likely to be effected by mode 
changes. The third goal of our security analysis is to organize the security 
analysis of common parts of the system centrally so that it does not need to 

be repeated for each mode. 

The Generic Model 

An adaptive profile starts with a generic model of the system, as illustrated 
in Figure 4.1. The purpose of the generic model is to provide a baseline 
description of the entire system. Parts of the system common to all modes 
can be described in full detail in the generic model. If the security analysis 
of the system identifies a weakness of one of the common components then 
this weakness can be attached to that component in the generic model; if this 
weakness can be exploited by a threat then the resulting system vulnerability 
must be reported. This part of the profile is the same as for system profiles. 
Components that are subject to adaptations can only be described in general 
terms in the generic model. General functionality, and possibly descriptions 
of the alternative ways of functioning, can be provided here, but details 
should be left to the descriptions of individual modes. 

Modes of the System 

In addition to the generic description of the system there is a separate de- 
scription of each mode. Each description of a mode concentrates attention 
on those components that are adapted for that mode. More detailed descrip- 
tions and additional documentation are provided in the mode description 
for the adaptive components. This additional information will detail how a 
component works in this particular mode. This may require a more detailed 
description of the component than was provided in the generic model of the 
system — e.g., the component may be further decomposed into subcompo- 
nents. Components that are not adapted for the mode are described using 
the same descriptions as are used to describe the component in the generic 

model. 
For our example system, three modes are illustrated in Figures 4.2, 4.d, 

and 4.4. In these figures, the components that are shaded dark gray are the 
components that are adapted for the mode. Components whose functional- 
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Figure 4.1: The Generic System 
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ity does not change in the mode are unshaded or shaded light gray; these 
components are the same as for the generic model. Different kinds of adap- 
tations are possible for different components; these different adaptations are 
highlighted in the figures by outlining the different adaptations using dif- 
ferent dashed lines. For example, first mode is called Normal Mode and is 
illustrated in Figure 4.2. In this mode there are four different adaptations, 
effecting six different components. In Extraordinary Mode there are four 
adaptations, effecting five different components and in Training Mode there 
is one adaptation, effecting only one component. 

Once one has a description of a mode of a system, the security of the sys- 
tem operating in that mode can be analyzed. As for system profiles, this may 
result in the discovery of system weaknesses. These weaknesses may be ex- 
ploited by system threats resulting in system vulnerabilities. The weaknesses, 
threats, and vulnerabilities that are specific to a mode are documented as 
part of the mode description. A weakness that is exhibited by an adaptive 
component is associated directly with that component in the description of 
the mode. This also associates any threat that can exploit this weakness and 
any resulting vulnerability indirectly with the adaptive component. 

In reviewing an adaptive profile, it is highly desirable to be able to quickly 
identify which components may have weaknesses that are specific to a mode. 
In Figures 4.2, 4.3, and 4.4 this is easy to do for adaptive components since 
these components are shaded dark gray. However, it is possible that a weak- 
ness in an adaptive component will result in a weakness in a component at a 
higher level in the component tree, that is, weaknesses may propagate up the 
component tree. Thus it is possible that a non-adaptive component, whose 
descriptions are taken from the generic model, will have weaknesses that are 
specific to a mode. This kind of weakness is called a derived weakness. In 
Figures 4.2, 4.3, and 4.4, components with derived weaknesses are are high- 
lighted by shading them light gray. This shading allows an analyst to quickly 
locate all components that have weaknesses that are specific to a mode. 

A mode also has associated with it a set of initial conditions that describe 
conditions that must be met in order to enter the mode. Initial conditions 
are described more fully in chapter 3. 
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Figure 4.5: The modes and transitions of the example system 

Transitions between Modes 

A transition of an adaptive system is a change from one mode to another in 
response to a change in the external environment of the system. Transitions 
are built into the system; they are a part of the normal operation of an 
adaptive system. What is important about a transition is how that change 
in operation of the system affects the security of the system, that is, the 
security concerns of the system operating in one mode may be different from 
the security concerns of the system operating in another mode. Also, the 
transitions may be constrained so that it is only possible for the system to 
change from certain modes to certain other modes. It may not be possible 
for an adaptive system to switch between any arbitrary pair of modes. 

An adaptive profile will list all the transitions that are possible in the 
system. Each transition will have a set of security concerns associated with 
it. A security concern details what is necessary to make sure that the security 
mechanisms required for the new mode are in place. Security concerns are 
described in detail in chapter 3. 

In the example of Figure 4.1, there are four possible transitions: from 
Normal to Training, Training to Normal, Normal to Extraordinary, and Ex- 
traordinary to Training. There are no direct transitions between Training 
and Extraordinary modes. These transitions are illustrated in Figure 4.5. 

4.3.3     Use of Tools: RDD-100 

It is quite feasible to provide tool support for this analysis, using existing 
tools. As one approach to this, this section shows how to adapt the RDD- 
100 database schema provided by the System Profile Group of the NSA to 
support adaptive profiles. First we give an overview of the NSA schema and 
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then describe our extensions. 

System Profile Data Base Schema 

RDD-100 is a systems engineering tool that can be used to support profil- 
ing. For example, the system profile proposal described in section 4.3.1 uses 
RDD-100. RDD-100 offers a powerful entity-relationship database and so- 
phisticated graphics that can be used to organize and display large amounts 
of information and the complex relationships between different pieces of this 
information. 

The RDD-100 database organizes information in terms of instances of 
different element types and relationships between elements. For example, 
a system is represented in RDD-100 by instances of elements of type Sys- 
tem and Component. The fact that a system is built from components 
is represented by the relationship built from between elements of type Sys- 
tem and elements of type Component. An example of this can be seen 
in Figure 4.1 where the box labeled "G: The System" is an instance of type 
System and the boxes labeled "G: Data Processing..." and "G: System 
Functions" represent the two Components that "G: The System" is built 
from. Each element also has attributes that provide information about the 
element. For example, most elements have a DESCRIPTION attribute that is 
used to describe the element. 

The NSA system profile extends the standard RDD-100 database by 
adding several element types; three of these types are Weakness, Threat, 
and Vulnerability. Elements of type Weakness can be related to elements 
of type Component by the relationship exhibits. Elements of type Threat 
can be related to elements of type Weakness by the relationship exploits. 
A Weakness is related to any resulting Vulnerability by the relationship 
results in. 

The DESCRIPTION attribute of a Weakness describes the weakness ex- 
hibited by the component. The DESCRIPTION attribute of a Threat de- 
scribes the threat to the system. A Vulnerability element contains the 
attributes DESCRIPTION, RECOMMENDATIONS, and SECURITY RISK that 
give details on how to perform the attack, recommendations for fixes, and 
describe the ease of exploitation and likelihood of detection, respectively. 
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Adaptive Profile Data Base Schema 

The data base schema for system profiles is extended by adding elements that 
represent modes and transitions. A mode of a system is represented by an 
instance of the type Mode. The DESCRIPTION attribute of a Mode element 
is used to describe the mode and any information that applies to the mode 
as a whole. The adaptive components of the mode are grouped together 
according to the adaptation affecting the components. A single adaptation 

may affect many components and grouping these components together makes 
it easy to identify which components are affected by which adaptations. An 
element type, Adaptation, is introduced that is used to group related adap- 
tive components together. The DESCRIPTION attribute of an Adaptation 
is used to describe, in general terms, the particular adaptation. Elements of 
type Adaptation and elements of type Component may be related by the 
relation directly affects. All the Components targeted by this relation are 
affected in some way by this adaptation. A Component may be affected by 
more than one adaptation. 

The Extraordinary Mode of Figure 4.3 is represented in the RDD-100 data 
base using an element named "M2: Extraordinary" of type Mode. The tar- 
gets of the directly effects relation for this element are three elements of type 
Adaptation named "M2: Criticality Scheduling", "M2: Short Encryption 
Keys", and "M2: Alternate Routing". The "M2: Criticality Scheduling" 
Adaptation directly affects the "M2: Message Queues" Component and 
represents the scheduling of messages for processing based on their critical- 
ity. The "M2: Short Encryption Keys" Adaptation directly effects the 
"M2: Encryption" Component and represents the use of short encryption 
keys for the encryption of all outgoing messages. The "M2: Alternate Rout- 
ing" Adaptation directly effects the "M2: Encryption", "M2: Network Re- 
ceiver", "M2: Network Router", and "M2: Network Sender" Components 
and represents the reconfiguration of the network to allow sending messages 
over insecure links if there is no secure path available to their destination. 
Note that the Component "M2: Encryption" is involved in two adaptations. 
In addition each of these Components can have a Weakness attached to 
it if one is uncovered during the security analysis. 

A Mode must also direct attention to those components that exhibit 
derived weaknesses. The relation indirectly affects relates the Mode with the 
Components that are indirectly affected by the mode. In the example, the 
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"Extraordinary" Mode indirectly affects the Components "M2: Network 
Manager" and "M2: Cryptography". Each of these Components should 

have a Weakness attached to it. 
Initial conditions are associated with a Mode using the relation requires. 

The targets of this relation are elements of type InitialCondition. Each 
element of this type describes an initial condition that must be satisfied upon 
entering the mode. For example, the "Training" Mode requires the "Disks 
are Sanitized" InitialCondition that requires that all sensitive information 
has been removed from all disks and the disks sanitized so that no residual 
sensitive information remains on them. 

Transitions between Modes are represented by elements of type Tran- 
sition. The DESCRIPTION attribute describes the transition. A Transition 
represents a transition from one Mode to another Mode; the relations starts 
in and ends in relate the Transition to the starting Mode and the ending 
Mode, respectively. 

Each transition has associated with it a set of concerns. These concerns 
describe what is required to make sure that all the mechanisms are in place 
to meet the security needs of the next mode. Each of these concerns is 
described using an element of type Concern. A Transition is related to its 
set of Concerns using the relation contains. 

The four transitions of the example are represented by four elements of 
type Transition: "Normal to Training", "Training to Normal", "Normal 
to Extraordinary", and "Extraordinary to Normal". For the "Normal to 
Training" Transition, the target of the starts in relation is "Normal" mode 
and the target of the ends in relation is "Training". 
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Chapter 5 

Future Directions 

We give here a brief list of suggested topics for future work on adaptive 

security. 

• Implement operational aspects of dynamic security lattices 

- This would employ both existing and new access control mecha- 
nisms, and involve recovery and auditing procedures 

• Build tools to support use of task-based policies and the need-to-know 

model. 

- Such a tool would assist in assigning, understanding, and manag- 
ing the powers granted to users of a system. 

• Extend the systems profiling style of qualitative analysis of risk with 
quantitative analysis 

- In particular, link the ANSSR quantitative analysis with the NSA- 

style profiles 

• Develop RDD-100 or other tool support of risk analysis 

• Get feedback on use of methodology 

- Assist on security design and analysis of a practical example of an 
adaptive security system 
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